Айниятро исбот кунед:
\((1+\frac{1}{\cos{2\alpha}}+\operatorname{tg}{2\alpha})(1-\frac{1}{\cos{2\alpha}}+\operatorname{tg}{2\alpha})=\)
\( = 2\operatorname{tg}{2\alpha}\)
\(A = (1+\frac{1}{\cos{2\alpha}}+\operatorname{tg}{2\alpha})(1-\frac{1}{\cos{2\alpha}}+\operatorname{tg}{2\alpha})\)
\(B = 2\operatorname{tg}{2\alpha}\)
\(A =((1+\operatorname{tg}{2\alpha})+\frac{1}{\cos{2\alpha}})((1+\operatorname{tg}{2\alpha})-\frac{1}{\cos{2\alpha}})=\)
\( = (1+\operatorname{tg}{2\alpha})^2-(\frac{1}{\cos{2\alpha}})^2\)
\(A = 1+2\operatorname{tg}{2\alpha}+\operatorname{tg}^2{2\alpha}-\frac{1}{\cos^2{2\alpha}}\)
\(1+\operatorname{tg}^2{2\alpha} = \frac{1}{\cos^2{2\alpha}}\)
\(A = 2\operatorname{tg}{2\alpha}+\frac{1}{\cos^2{2\alpha}}-\frac{1}{\cos^2{2\alpha}} = 2\operatorname{tg}{2\alpha}\)
\(A = 2\operatorname{tg}{2\alpha}\)
Исбот шуд.
Айниятро исбот намоед: \((1+\frac{1}{\cos{2\alpha}}+\operatorname{tg}{2\alpha})(1-\frac{1}{\cos{2\alpha}}+\operatorname{tg}{2\alpha})=2\operatorname{tg}{2\alpha}\)
- Информация о материале
- Автор: Раҳимҷон Ҳакимов
- Категория: Тригонометрия
- Просмотров: 655
- Таҳқиқи функсияи \(y = \frac{x^3-1}{4x^2}\)
- Таҳқиқи функсияи \(y = \ln{\frac{x+1}{x+2}}\)
- Таҳқиқи функсияи \(y = \frac{e^x}{x}\)
- Таҳқиқи функсияи \(y = -\frac{1}{4}(x^3-3x^2+4)\)
- Соҳаи муайянии функсияи \(y = \frac{x^2}{1+x}\)
- Соҳаи муайянии функсияи \(y = \sqrt{\cos x^2}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\left(\frac{1}{n^2} + \frac{2}{n^2} + ... + \frac{n-1}{n^2} \right)\)
- Соҳаи муайянии функсияи \(y = \sqrt{\sin\left(\sqrt{x}\right)}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\frac{1 + a + a^2 + ... + a^n}{1 + b + b^2 + ... + b^n}\)
- Соҳаи муайянии функсияи \(y = \log(x+2) + \log(x-2)\)